imgProcessor.measure.sharpness package

Submodules

imgProcessor.measure.sharpness.SharpnessfromPoints module

class imgProcessor.measure.sharpness.SharpnessfromPoints.SharpnessfromPointSources(min_dist=None, max_kernel_size=51, max_points=3000)[source]

Bases: imgProcessor.measure.sharpness._base.SharpnessBase

addImg(img, roi)[source]

img - background, flat field, ste corrected image roi - [(x1,y1),...,(x4,y4)] - boundaries where points are

drawPoints(img=None)[source]
psf(correct_size=True, filter_below=0.0)[source]

imgProcessor.measure.sharpness.parameters module

functions taken from http://stackoverflow.com/questions/7765810/is-there-a-way-to-detect-if-an-image-is-blurry is reference of http://www.sayonics.com/publications/pertuz_PR2013.pdf Pertuz 2012: Analysis of focus measure operators for shape-from-focus

code transformed from C++.openCV -> python.cv2

RETURN: focusMeasure - parameter describing sharpness of an image

imgProcessor.measure.sharpness.parameters.modifiedLaplacian(img)[source]

‘LAPM’ algorithm (Nayar89)

imgProcessor.measure.sharpness.parameters.normalizedGraylevelVariance(img)[source]

‘GLVN’ algorithm (Santos97)

imgProcessor.measure.sharpness.parameters.tenengrad(img, ksize=3)[source]

‘TENG’ algorithm (Krotkov86)

imgProcessor.measure.sharpness.parameters.varianceOfLaplacian(img)[source]

‘LAPV’ algorithm (Pech2000)