imgProcessor.features package¶
Submodules¶
imgProcessor.features.PatternRecognition module¶
imgProcessor.features.QuadDetection module¶
imgProcessor.features.SingleTimeEffectDetection module¶
-
class
imgProcessor.features.SingleTimeEffectDetection.
SingleTimeEffectDetection
(images, noise_level_function=None, nStd=4, save_ste_indices=False)[source]¶ Bases:
object
Detect and remove Single-time-effects (STE) using min. 2 equivalent images public attributes:
.mask_clean –> STE-free indices .mask_STE –> STE indices (only avail. if save_ste_indices=True) .noSTE –> STE free image
imgProcessor.features.hog module¶
-
imgProcessor.features.hog.
hog
(image, orientations=6, ksize=(5, 5))[source]¶ returns the Histogram of Oriented Gradients
Parameters: - ksize – convolution kernel size as (y,x) - needs to be odd
- orientations – number of orientations in between rad=0 and rad=pi
similar to http://scikit-image.org/docs/dev/auto_examples/plot_hog.html but faster and with less options
imgProcessor.features.minimumLineInArray module¶
imgProcessor.features.polylinesFromBinImage module¶
-
imgProcessor.features.polylinesFromBinImage.
polylinesFromBinImage
(img, minimum_cluster_size=6, remove_small_obj_size=3, reconnect_size=3, max_n_contours=None, max_len_contour=None, copy=True)[source]¶ return a list of arrays of un-branching contours
img -> (boolean) array
minimum_cluster_size -> minimum number of pixels connected together to build a contour
##search_kernel_size -> TODO ##min_search_kernel_moment -> TODO
max_n_contours -> maximum number of possible contours in img max_len_contour -> maximum contour length