imgProcessor.interpolate package¶
Submodules¶
imgProcessor.interpolate.interpolate2dStructuredIDW module¶
-
imgProcessor.interpolate.interpolate2dStructuredIDW.
interpolate2dStructuredIDW
(grid, mask, kernel=15, power=2, fx=1, fy=1)[source]¶ replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power]
imgProcessor.interpolate.interpolate2dStructuredPointSpreadIDW module¶
-
imgProcessor.interpolate.interpolate2dStructuredPointSpreadIDW.
interpolate2dStructuredPointSpreadIDW
(grid, mask, kernel=15, power=2, maxIter=100000.0, copy=True)[source]¶ same as interpolate2dStructuredIDW but using the point spread method this is faster if there are bigger connected masked areas and the border length is smaller
replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel
[power] -> distance weighting factor: 1/distance**[power] [copy] -> False: a bit faster, but modifies ‘grid’ and ‘mask’
imgProcessor.interpolate.interpolate2dUnstructuredIDW module¶
imgProcessor.interpolate.interpolateCircular2dStructuredIDW module¶
-
imgProcessor.interpolate.interpolateCircular2dStructuredIDW.
interpolateCircular2dStructuredIDW
[source]¶ same as interpolate2dStructuredIDW but calculation distance to neighbour using polar coordinates fr, fphi –> weight factors for radian and radius differences cx,cy -> polar center of the array e.g. middle->(sx//2+1,sy//2+1)