fancytools.fit package

Submodules

fancytools.fit.fit2dArrayToFn module

fancytools.fit.fit2dArrayToFn.fit2dArrayToFn(arr, fn, mask=None, down_scale_factor=1, output_shape=None, guess=None)[source]

Fit a 2d array to a 2d function

*Ignore masked values * [down_scale_factor] map to speed up fitting procedure * [output_shape] shape of the output array * [guess] must be scaled using [scale_factor]

Returns:Fitted map, fitting params (scaled), error

fancytools.fit.linregressIgnoringOutliers module

fancytools.fit.linregressIgnoringOutliers.linregressIgnoringOutliers(x, y, n_iter=3, nstd=2)[source]

do linear regression [n_iter] times successive removing [outliers] return result of normal linregress

fancytools.fit.polyFitIgnoringOutliers module

fancytools.fit.polyFitIgnoringOutliers.polyFitIgnoringOutliers(x, y, deg=2, niter=3, nstd=2)[source]
Returns:

callable function of polynomal fit excluding all outliers

Return type:

(np.poly1d)

Parameters:
  • deg (int) – degree of polynomal fit
  • n_iter (int) – do linear regression n times successive removing
  • nstd (float) – exclude outlioers, if their deviation is > [nstd] * standard deviation